Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Uwe Kolitsch

Universität Wien, Institut für Mineralogie und Kristallographie, Geozentrum, Althanstrasse 14, A-1090 Wien, Austria

Correspondence e-mail:
uwe.kolitsch@univie.ac.at

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{c}-\mathrm{O})=0.002 \AA$
R factor $=0.030$
$w R$ factor $=0.073$
Data-to-parameter ratio $=32.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Pentaaquahydroxoscandium(III) dibromide, $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right] \mathrm{Br}_{2}$

$\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right] \mathrm{Br}_{2}$ is a scandium(III) halide compound that contains centrosymmetric $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2}{ }^{4+}$ dimeric cationic units built from two edge-sharing (hydroxo-bridged) symmetrically equivalent $\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})_{2}$ polyhedra. The mean $\mathrm{Sc}-$ O bond length is $2.156 \AA$. The hydrogen bonds $(\mathrm{O} \cdots \mathrm{Br})$ are of low strength. All atoms are in general positions.

Comment

As part of work on the crystallochemical behaviour of $\mathrm{Sc}^{\mathrm{III}}$ in inorganic compounds, pentaaquahydroxoscandium(III) dibromide, $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right] \mathrm{Br}_{2}$, (I), was obtained. Although a compound with this formula has been reported in the literature (Petru \& Kutek, 1960; Arkhangel'skii et al., 1972), neither the crystal symmetry nor the crystal structure were given.

The crystal structure of (I) contains centrosymmetric dimeric cationic $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2}{ }^{4+}$ units, counterbalanced by Br^{-}anions. The cationic unit is built from two edge-sharing symmetrically equivalent $\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})_{2}$ polyhedra (Fig. 1). The polyhedron may be described as a monocapped (by O1) trigonal antiprism. The two OH groups $(\mathrm{O} 1-\mathrm{H} 1)$ act as hydroxo-bridges between the two Sc-centred polyhedra (Fig. 2).

Practically identical dimeric cationic units also occur in orthorhombic $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2} X_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, where $X=\mathrm{Br}$ or Cl (Ilyukhin \& Petrosyants, 1994; Ripert et al., 1999; see also Petrosyants \& Ilyukhin, 2004). In contrast, the crystal structures of monoclinic $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}\right] X_{3}$, where $X=\mathrm{Br}$ or $\mathrm{Cl}(\mathrm{Lim}$ et al., 2000), contain isolated $\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{7}$ polyhedra.

The mean $\mathrm{Sc}-\mathrm{O}$ bond length in (I) is $2.156 \AA$ (Table 1), in accordance with the grand mean $\mathrm{Sc}-\mathrm{O}$ bond length of 2.17 (7) \AA given for heptacoordinated Sc in a review of Sc

Figure 1
A view of the crystal structure of (I) along [100]. Dimeric $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2}{ }^{4+}$ cationic units are bonded to Br^{-}anions via weak hydrogen bonds. Sc atoms are shown in turquoise, Br atoms in green, O atoms in red and H atoms in grey. The unit cell is outlined. All atoms are shown as spheres of arbitrary radii.

Received 28 March 2006
Accepted 12 April 2006

Figure 2
A view of the dimeric $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2}{ }^{4+}$ cationic unit in (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. [Symmetry code: (i) $-x,-y,-z$.]
compounds by Serezhkin et al. (2003). The $\mathrm{Sc}-\mathrm{OH}$ bonds are distinctly shorter than the $\mathrm{Sc}-\mathrm{H}_{2} \mathrm{O}$ bonds, equivalent to the situation in $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2} X_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, where $X=\mathrm{Br}$ or Cl (Ilyukhin \& Petrosyants, 1994; Ripert et al., 1999), and also in agreement with the observations of Serezhkin et al. (2003).

The hydrogen bonds are of low strength, as shown by $\mathrm{O} \cdots \mathrm{Br}$ distances between about 3.24 and $3.41 \AA$ (Table 2).

Experimental

Compound (I) was prepared by mixing $\mathrm{Sc}_{2} \mathrm{O}_{3}, 48 \%_{\mathrm{wt}} \mathrm{HBr}$, concentrated HNO_{3} and distilled water at room temperature (the volume ratios are unknown, but the two acids were added in excess quantities). On slow evaporation of the acidic aqueous solution, compound (I) formed as colourless rounded tabular crystals, stable under ambient conditions. The crystals were accompanied by minor amounts of thin crusts of $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right]_{2} \mathrm{Br}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ (Ilyukhin \& Petrosyants, 1994; Ripert et al., 1999).

Crystal data

$\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})\right] \mathrm{Br}_{2}$
$M_{r}=311.87$
Triclinic, $P \overline{1}$
$a=7.412$ (1) \AA
$b=8.368$ (2) \AA
$c=8.627$ (2) \AA
$\alpha=95.12$ (3) ${ }^{\circ}$
$\beta=114.56$ (3) ${ }^{\circ}$
$\gamma=101.33(3)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SCALEPACK; Otwinowski et al., 2003)

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030\)
\(w R\left(F^{2}\right)=0.073\)
\(S=1.03\)
4082 reflections
127 parameters
All H -atom parameters refined
```

$$
\begin{aligned}
& V=468.3(2) \AA^{3} \\
& Z=2 \\
& D_{x}=2.212 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo Ko radiation } \\
& \mu=9.29 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Fragment, colourless } \\
& 0.17 \times 0.15 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

$$
T_{\min }=0.301, T_{\max }=0.457
$$

$$
\text { (expected range }=0.260-0.395)
$$

8112 measured reflections 4082 independent reflections 3219 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.021
$$

$$
\theta_{\max }=34.9^{\circ}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.034 P)^{2}\right. \\
& \quad \quad+0.15 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.98 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.87 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, } 1997) \\
& \text { Extinction coefficient: } 0.0166 \text { (13) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Sc}-\mathrm{O} 1$	$2.0485(15)$	$\mathrm{Sc}-\mathrm{O} 5$	$2.2024(19)$
$\mathrm{Sc}-\mathrm{O}^{\mathrm{i}}$	$2.0824(15)$	$\mathrm{Sc}-\mathrm{O} 4$	$2.2032(19)$
$\mathrm{Sc}-\mathrm{O} 2$	$2.1591(19)$	$\mathrm{Sc}-\mathrm{O} 6$	$2.2228(18)$
$\mathrm{Sc}-\mathrm{O} 3$	$2.1724(19)$		

Symmetry code: (i) $-x+2,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1^{\text {i }}$	0.85 (2)	2.52 (2)	3.3532 (17)	165 (3)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1^{\text {ii }}$	0.87 (2)	2.39 (2)	3.236 (2)	165 (3)
$\mathrm{O} 2-\mathrm{H} 3 \cdots \mathrm{Br} 2^{\text {iii }}$	0.88 (2)	2.54 (2)	3.392 (2)	162 (3)
$\mathrm{O} 3-\mathrm{H} 4 \cdots \mathrm{Br}^{\text {iv }}$	0.89 (2)	2.38 (2)	3.265 (2)	173 (3)
$\mathrm{O} 3-\mathrm{H} 5 \cdots \mathrm{Br} 2$	0.89 (2)	2.54 (2)	3.407 (2)	165 (3)
$\mathrm{O} 4-\mathrm{H} 6 \cdots \mathrm{Br} 2^{\text {v }}$	0.88 (2)	2.53 (2)	3.371 (2)	161 (3)
$\mathrm{O} 4-\mathrm{H} 7 \cdots \mathrm{Br} 2^{\text {vi }}$	0.88 (2)	2.40 (2)	3.280 (2)	174 (4)
$\mathrm{O} 5-\mathrm{H} 8 \cdots \mathrm{Br} 2^{\text {i }}$	0.88 (2)	2.44 (2)	3.312 (2)	170 (4)
$\mathrm{O} 5-\mathrm{H} 9 \cdots \mathrm{Br}^{\text {v }}$	0.86 (2)	2.48 (2)	3.302 (2)	160 (4)
$\mathrm{O} 6-\mathrm{H} 10 \cdots \mathrm{Br} 2^{\text {iv }}$	0.89 (2)	2.41 (2)	3.2940 (18)	175 (3)
$\mathrm{O} 6-\mathrm{H} 11 \cdots \mathrm{Br} 1^{v}$	0.87 (2)	2.42 (3)	3.2413 (18)	156 (4)

Symmetry codes: (i) $-x+2,-y,-z+1$; (ii) $-x+2,-y,-z$; (iii) $x+1, y, z$; (iv) $-x+1,-y,-z ;$ (v) $x, y-1, z ;$ (vi) $-x+1,-y,-z+1$.

All $\mathrm{O}-\mathrm{H}$ distances were restrained to a length of 0.90 (2) \AA, and the $U_{\text {iso }}(\mathrm{H})$ values were freely refined.

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski et al., 2003); data reduction: SCALEPACK and DENZO (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Financial support from the International Centre for Diffraction Data (grant No. 90-03 ET) is gratefully acknowledged.

References

Arkhangel'skii, I. V., Komissarova, L. N., Shatskii, V. M. \& Shepelev, N. P. (1972). Zh. Neorg. Khim. 17, 310-314. (In Russian.)

Dowty, E. (1999). ATOMS. Version 5.0.4 for Windows and Macintosh. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ilyukhin, A. B. \& Petrosyants, S. P. (1994). Zh. Neorg. Khim. 39, 1517-1520. (In Russian.)
Lim, K. C., Skelton, B. W. \& White, A. H. (2000). Aust. J. Chem. 53, 875878.

Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z., Borek, D., Majewski, W. \& Minor, W. (2003). Acta Cryst. A59, 228-234.
Petrosyants, S. P. \& Ilyukhin, A. B. (2004). Russ. J. Coord. Chem. 30, 194197.

Petru, F. \& Kutek, F. (1960). Collect. Czech. Chem. Commun. 25, $1143-$ 1147. (In German.)

Ripert, V., Hubert-Pfalzgraf, L. G. \& Vaissermann, J. (1999). Polyhedron, 18, 1845-1851.
Serezhkin, V. N., Kryuchkova, G. V. \& Kazakevich, V. S. (2003). Zh. Neorg. Khim. 48, 1322-1330. (In Russian.)
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany

[^0]: (C) 2006 International Union of Crystallography All rights reserved

